

Non-Structural measures: Carlisle Case Study

KULTURisk methodology themed teaching material

Jeff Neal, Paul Bates, Amy Dabrowa and Niall Quinn

-

Caroline Keef², Keith Beven³ and David Leedal³

¹School of Geographical Sciences, University Road, University of Bristol, Bristol. BS8 1SS. ²JBA Consulting, South Barn, Broughton Hall, Skipton, N Yorkshire, BD23 3AE, UK (Now @ Yorkshire Water. ³Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK.

Carlisle Case Study: Flooding in 2005

The problem at confluences

This definition causes a problem at confluences

The problem at confluences

This definition causes a problem at confluences

RP

KUTURisk Scenarios

- Baseline scenario
 - Deterministic mapping of flood hazard, 1 in 100 year flood
 - Analogous to the deterministic mapping that the Environment Agency would carry out as part of a flood risk assessment.
- Alternate scenario

 Probabilistic mapping of flood hazard with uncertainty due to historical record length.

- Statistical event generator
 - Simulate many possible events
 - Simulate flood extent
 - Combine into probabilistic map
 - Repeat process to consider uncertainty

Statistical modelling of gauge flows

The problem at confluences

- Model the conditional distribution of a set of variables given that one of these variables exceeds a high threshold (Heffernan and Tawn, 2004).
- Take a Copula approach
 - Marginal distributions modelled using generalised Pareto

Event hydrographs

Simulated discharge

The problem at confluences (uncertainty)

Refit to data and run event generator may times to approximate uncertainty

Probability of inundation

Run 1 of the event generator using all flow data

Uncertainty in the 0.01 AEP extent

Risk to people by district

←Baseline scenario1 in 100 year flood

0.35 fatalities in total

Risk focused in rural areas

Alternate scenario 90th percentile of 1 in 100 year flood

2 fatalities in total

Risk focused in urban areas

RRA	Baseline	Alternative
Number of injuries	34 people	203 people
Number of deaths	1 person	6 people
Inundated buildings (Urban)	34700 m ²	255000 m ²
Inundated buildings (Industry)	37800 m ²	45100 m ²
Inundated roads	6850 m	22410 m
SERRA		
People		
Number of injuries (SERRA adjusted)	11 people	67 people
Number of deaths (SERRA adjusted)	0.35 people	2 people
Cost of Injuries	£0.59M	£3.5M
Cost of Deaths	£0.89M	£5.2M
Cost of Trauma	£9.2M	£62.5M
Cost of Disruption	£0.1M	£0.6M
Cost of Emergency response & evacuation (10.7% of	£2.7M	£20.5M
Buildings cost)		
Total cost to people	£13.6M	£92.5M
Buildings		
Damage to Structures	£9.05M	£75.0M
Damage to Contents	£5.85M	£44.2M
Total Damage to Structures	£14.9M	£119.2M
Total Cost	£28.5M	£211.7M

K Risk

- MasterMap building outlines
- Depth damage curve
- Calculate damage from each event

Conclusions

- Flooding at confluences is critical to the basin-wide development of flood hazard and depends on the joint spatial distribution of flows.
- The maximum flood outline was a combination of multiple events.
 - Cannot assume the same return period on all tributaries
- Risk assessment using the event data was demonstrated.
 - Expected damages increase nonlinearly.
 - Areas at highest risk can change when uncertainty is considered
- As expected a few events caused most of the damage.

Independent Teaching Material

- Five exercises each 1-3 hrs
- Explore key KULTURisk themes
- Designed for independent working
- Available from UoB, hydrology website and KULTURisk link database
- Methods and instructions suitably generic for a range of software

Simple theoretical test cases

Introduction to lisflood – 2D solvers

Real-world test case

- 2. Simulate river flooding
- Use exercise 2 output to create risk map (simplified KULTURisk methodology)
- Probabilistic risk mapping, spatial dependence and uncertainty
- Exploring lisflood –
 assessing flood prevention
 measures by modifying
 input files

Exercise 3 – Risk mapping: Data Provided

Hazard Receptors:

- Exposure People
 - Vulnerability
- **Buildings Exposure**
 - Cost
- Exposure Roads

Hazard Indicators

 Max predicted water depth:

Max predicted water velocity:

Land use

1 - Residential

3 - Commercial

2 - Industrial

inundation

Calculate/identify the following:

Physical hazard to people and buildings

Risk of injury/risk of fatality per cell

Areas of likely road inundation

Likely economic costs due to

building damage

Where is the highest physical risk to people?

Land use

1 - Residential

length of roads inundated?

